Francois GUIBERT
Games Programming

Kasbrik

[image: image1.png]
2000/2001

Summary

2Summary

Introduction
4
Analysis and Design
5
Classes Relationship
5
Classes Description
6
Class Game
6
Class Ball
6
Class Object
6
Class Camera
7
Class Sprite2D
7
Class Score
7
Class Paddle
7
Class Particles
7
Structure EMITTER
8
Class Pickups
8
Class Timer
8
Class Level
8
Class Menu
8
Structure BRICK
8
File formats
8
Hi-scores file format
9
Level file format
9
Algorithms
11
Global game functioning
11
Using DirectX
11
Using Direct3D
11
Initialisation
11
Rendering
12
Using DirectInput
12
Initialising
12
Getting the user input
12
Using DirectX Audio
13
Initialisation
13
Playing sounds
13
Particle Systems
13
General functioning of particle systems
14
Properties used in the game
14
Explosions
14
Ball trail
15
Pick-up glow
15
Creating the particles with Direct3D
15
Vertex type
15
Billboarding
15
Alpha problem
16
Collisions detection and response
16
Collision detection
16
Collision response
17
Score
18
Displaying the score with Direct3D
18
Score animation
19
Debugging and Testing
20
Debugging
20
Using a debugger
20
Testing
20
Level configurations
20
Testers
20
Results and Evaluation
21
User Guide
22
Executing the game
22
Menu
22
Description
22
Controls
23
Moving in the menus
23
Moving the camera
23
Game
23
Goal
23
Controls
24
Bricks
24
Pick-ups
24
Score
24
Conclusion
26
References
27
Documentation
27
Websites
27


The CD-Rom contains the source code, this report, an executable version and screenshots of the program.

Introduction

This report is the description of the development of a game called Kasbrik. I created this game for the project of the module Games Programming.

The game is a simple breakout game (Arkanoid-like) in three-dimension made using DirectX 8. The purpose of this module was to learn the basic techniques of Games Programming and how to use a game API, here, DirectX.

In this report, we will first see the analysis and design part of the development. Then, we will describe how have been used DirectX and the main algorithms. There is also a user guide that is important for this kind of project. Finally, we will see the testing and debugging techniques and conclude the report.

Analysis and Design

Let’s see first the global presentation of the structure of the game engine and then we will describe the main classes of the program. The game has been developed in C++.

Classes Relationship

Because the full diagram of the relationships in this game is quite complex, let's see first briefly how it works with a small example. The Figure 1 shows three classes A, B and C linked together by lines. One line means "has got". The numbers at the extremities of the lines indicate the number of instance of a class contained in the other class. For example, the diagram means that the class A has got one, two or three instances of the class B and the class B has got two or more instances of the class C.

Figure 1 - Relationship diagram example

Figure 2 - Classes relationship in the game

The Figure 2 shows the relationship between the classes of the game. Let’s describe the most important links of the global structure. We see clearly that the class Game is the centre of the program. All the other classes can be directly or indirectly accessed from the class Game. There is only one class Game in the program.

We can see for example that the class Game has got one instance of Camera. It has also one instance of Paddle. Paddle, like many other classes have instances of Object, which is a 3D-object definition.

Some numbers are written with an asterisk in front of them. That means that they are only pointers. For example, the class Particles has got a pointer to the three balls of the game. The Ball classes are in fact defined in the class Game.

Brick and Emitter are not classes but structures. As they are important structures, they have been represented on this diagram but with a different symbol.

The connections between the classes are usually quite instinctive, as classes are only complex data types.

Classes Description

Let’s see here the description of the classes of the game and their fields. This part will help understanding why the previous diagram has been used.

Class Game

As said before, the class Game is the main class of the program. It is created after the initialisation of the application. It contains all the functions used in a Game, like for example Input to get the user input, Render to display the game on the screen, AnimateAndCollision for the animation or HandleMenu for the user interface in the menus. The only methods that are available outside the class (public) are the constructor for the initialisation, the destructor and the method MainLoop called once per frame. The method PlayWave used for the sound is also public because it needs to be accessed from class inside the class Game.

Class Ball

The class Ball is obviously the class representing one ball of the game. There are three instances of the class Ball in the class Game. A ball contains an object used to represent the ball (basically, a sphere). The ball position is defined with two coordinates x and y. The third coordinate z is constant because the game mainly works on two axis. The movement of the ball is defined with a direction and a speed. The class Ball also contains its size and a Boolean used to tell whether the ball is stuck on the paddle or not.

Among the important methods of the class Ball, there is the class used to detect and response to the collisions with the other elements: AnimateAndTestCollisions and GetDirectionFromPaddleContact (see “Collisions detection and response”).

Class Object

The class Object is the class containing a 3D object. It therefore contains DirectX type variables used to store all the information of an object. It has a mesh (D3DXMESH), a texture (DIRECT3DTEXTURE8), a material (D3DMATERIAL8) and a matrix (D3DXMATRIX). It contains functions used to load meshes and textures from files. X files are used for meshes and JPG for textures. It has also a few functions used to modify the matrix of the object in order to move the object in the world (AddTranslation, SetTranslation, SetScale).

Class Camera

The camera is the class used to set up the view matrix of Direct3D. It of course contains the position of the source and the target of the camera. It also has got a spherical representation of the camera used for the user to move the camera easily (see “User Guide”). Among its methods, there are methods used to move the camera from small increment usually received from mouse or keyboard input (MovePosition, MoveTarget) and of course a method setting the Direct3D view matrix (SetMatrices).

Class Sprite2D

The class Sprite2D represents a quad displayed at the end of the rendering in screen space. It is used to display the numbers of the score and the lives (see “Displaying the score with Direct3D”). As for the class object, it contains a texture (DIRECT3DTEXTURE8) but the quad is defined with a vertex buffer (DIRECT3DVERTEXBUFFER8) and not a mesh because we need some particular access to it. The class Sprite2D as a few functions used to load the texture (SetTexture), set the texture coordinates (SetTexCoord) and to render the sprite (Render). There is also a particular function called SetTexCoordDigit that set up the mapping coordinates in order to display a digit given in parameter. This is based on a texture with all the digits. The texture is not always set just before rendering because it can be set in Direct3D prior to the render call.

Class Score

The class Score is used to display the score and the lives in the top right corner of the screen. The score is made up of 5 digits and is displayed using the class Sprite2D. The lives are also displayed with Sprite2D. The class Score contains also the list of the hi-scores and the functions used to read and write the hi-score file (see “Hi-scores file format”).

Class Paddle

The class Paddle is representing the paddle of the game. It contains an object with the mesh of the paddle. The class Paddle also has a texture matrix used to animate the texture on the paddle. This class is quite simple and has a few functions used to resize the paddle and to tell whether the paddle is glued or not.

Class Particles

The class Particles contains all the emitters used in the game at any time. It creates, deletes, animates and displays the particle systems of the game. The particle systems are used to render the explosions, the glow around pick-ups and the trail of the balls. It therefore contains methods like Animate or Render.

It has two textures: one is used for explosions and ball trails and the other one is used for the glow. The emitters are not represented by a class but by a simple structure, see below to have its explanation.

Structure EMITTER

The structure EMITTER is used in the class Particles and represents one “effect”. It contains the number of particles used for this effect, a matrix, a vertex buffer containing the 3D representation of the particles, an array of particles, a color and the type of particles. More detailed explanation is made in the part “Particle Systems”.

Class Pickups

The class Pickups handles all the pickups that are currently out of their brick. It handles their animation and collisions with the paddle to see if the player caught it. There are therefore a function AnimateAndTestCollision for this test and a Render function.

Class Timer

The class Timer is a very simple class handling the timer. It has a very precise timer set up with the Windows functions QueryPerformanceFrequency and QueryPerformanceCounter. Two methods are used to get the timer: one called GetElapsedTime which returns the number of milliseconds elapsed since the last call to this function and GetTimerValue which returns the number of milliseconds elapsed since the initialisation of the timer.

Class Level

The class Level contains the description of the current level. It has the information of the position and type of the bricks. It has an instance of the class Particles and of the class Pickups. It has also functions used to load a level from a file (LoadLevel).

Class Menu

The class Menu is a class used for the interface. Each menu and sub-menu is an instance of the class Menu. For example, to set up a menu, we first have to add all the items. Some items can be selectable, some other not. Then, the input from the user is send to the active menu with SendInput and the selection is modified accordingly. We can return the current selection with a method called GetCurrentSelection.

A class Menu is also used to display the hi-scores.

Structure BRICK

The structure BRICK is defined in the class Level. As a level is made up of an array of bricks, even if there is a space without brick, a structure BRICK is associated with that space. That is the reasons why there is a field telling whether the brick is present or not. Another field tells whether the brick is breakable. The structure BRICK also contains the pick-up of the brick (if any), the brick position (world matrix) and texture mapping information (texture matrix).

File formats

There are two file formats that have been created especially for the game. These are the format of the hi-scores and of the levels. Let’s see here their description.

Hi-scores file format

There is one file use to store the hi-scores. It contains a list of ten names of fourteen characters with their scores of five digits. In order to avoid an easy modification of the hi-scores from outside the program, I tried to make some changes to the data. Here is how it works:

The file of the hi-scores (hiscores.dat) is a binary file. All the scores are entered in the order from the first to the last with the name followed by the score. The idea is to write each character with a small modification and then to add garbage between each character. The modification applied to each character is based in the XOR (exclusive OR, written 
[image: image2.wmf]Ä

) because it has the following handy property: 
[image: image3.wmf]a

b

c

c

b

a

=

Ä

Û

=

Ä

. Each character, is “xor-ed” by 
[image: image4.wmf]hs

i

+

+

100

 with i the current character index of the string and hs the position of the string being written in the hi-score list (see example below).

The digits are encoded the same way, with a xor and in reverse order (starting from the right most digit).

And garbage is added between each character. The garbage is simply a random value that is ignored when reading the file.

Example: we are encoding the 3rd row (3rd place) of the hi-score that is: “Player” with a score of “12345”. To encode the letter “y” of Player, we have to make a xor with the ASCII code of “y” and (100+2+3). 2 is the index of the 3rd row (starting at 0) and 3 is the index of the letter y in the name Player (starting at 0). 

An encrypted file then looks like:

""
Ÿ
ï
œé
r
<
žlcMÆ^;oî½Ñ¼§¿Za�d=gÆg
h_#
À

ŒÙ
£
æ'mzN¯_9p¼c¿Y¾C`
`5g–h½iVK�GUb
û
M
£MþCOú@›qZ¿d¾â¹Efsg
h
iíj´JêH
ä
w
è
‰
xN%BáPØ@#rž¾E¹|¸
gÛh;iÔjŠkÒEðI'
w
™
/
ç

OÏ]3Q2@bs8¹¹¸ž»bh§iYj6kul!D
JÀ×
?
3
B

PÔ\HRÄ@ytÐ¸–»Vº�idj—kUlÆmgGÚKë-ù‑
Õ
Qf_]Si@"uM»ûº×µ?j
kþl¯mSn/FpL£
×
Á¢
�
ËR
^ÄT@ïv
º³µN´6k@l
m@nxo{AœM)g
ð¸
¤ÄS«YNUË@Ów4µÚ´û·lmm¿nØo
p½@ÝN‘ê
n
e
ffTTXìVg@ßx°´¿·~,mSnwo¯pÎq
That is not very readable of modified from outside of the program, as wished.

We also must take care for the score because we need to write the file. So, if the game is launched from a write-protected media (protected disc or CD-Rom), we must ensure that the game does not crash when attempting to write the hi-scores.

If the media is write-protected, the hi-scores are lost we the player leaves the game.

Level file format

This format has not been “encrypted” so that it is possible to modify and create new levels easily. However, no test is made when reading the file and a corrupted file may cause the game to quit. The file format is very simple. It contains a list of numbers indicating the type of each brick. As there is a maximum of 182 bricks (14 rows and 13 columns), there are always 182 numbers in the file. Usually, some “new line” characters are added in order to have a nice presentation easily modifiable of the file but these are not needed. Here is the correspondence between the number of the file and the brick created:

· 0: no brick at this emplacement

· 1: standard brick (tiled like texture)

· 2: unbreakable brick (metal texture)

· 3: standard brick (brick texture)

· 4: standard brick (wood texture)

· 5: standard brick (water texture)

· 6: standard brick (pink texture)

· 7: standard brick (stars texture)

Here is an example of a level (this is the first level of the game):

10105555033330

10105005030000

11005555033330

11005005000030

10105005000030

10105005033330

00000000000000

44005500601010

40405050601010

44005500601100

40405050601010

40405050601010

44005050601010

Not test is made when loading each level to see if they have been modified. One could modify the levels in order to have more brick to break and get more points.
Algorithms

Let’s see now a description of the main algorithms of the game.

Global game functioning

The Figure 3 shows the global functioning of the game.


Figure 3 - Global functioning of the game

We see in this diagram that once everything has been initialised, the program enters the main loop. In the main loop, we first get the user input, then animate the game with the information of the input and finally, we render the frame.

However, this diagram does not show the loop when the user is inside the menus that is slightly different because there is no collision detection and response for example.

Using DirectX

This part will explain how have been used the different components of DirectX. It is important to note that we are using DirectX 8.

We will see how are initialised the different components and how they are used. The initialisation of DirectX is made in the global function InitDX.

Using Direct3D

To display the graphics, DirectX Graphics (and especially Direct3D) is used in the game.

Initialisation

Here are the steps used to initialise Direct3D.

· Creation of the Direct3D object with Direct3DCreate8.

· Initialisation of a structure D3DPRESENT_PARAMETERS with full-screen or windows mode depending on the user choice.

· Creation of the 3D Device with CreateDevice. We want a device with hardware capable of using Direct3D (TNT, GeForce…)

The device obtained is finally used to set up all the configuration of Direct3D and to render the objects.

· Objects are loaded with the D3DX function D3DXLoadMeshFromX. Then, the mesh is copied in order to have the desired vertex format with CloneMeshFVF and the normals of the objects are computed with D3DXComputeNormals. Some objects are created by generating manually a vertex buffer (sprites, particles).

· The textures are jpeg files loaded with D3DXCreateTextureFromFile.

Rendering

Globally, here are all the steps needed to perform to render a scene:

· Set up all the global properties (texture filtering, Z-Buffer, alpha blending, ambient lighting)

· Set up the world, view and projection matrices (SetTransform) (and texture matrix if needed).

· Set up the lights (SetLight and LightEnable)

· Set the texture and material (SetTexture and SetMaterial)

· Clear the viewport (Clear)

· Call BeginScene
· Render everything (DrawSubset for D3DX meshes or SetVertexShader, SetStreamSource and DrawPrimitive for customised objects with vertex buffers)

· Call EndScene
· Display the back buffer (Present)

For the particles and the sprite, see “Creating the particles with Direct3D” and “Displaying the score with Direct3D” for more details.

Using DirectInput

DirectInput is used to handle the keyboard and the mouse.

Initialising

Here are the steps needed to initialise Direct3D.

· The DirectInput object is created with DirectInputCreate8.

· A mouse device is created with CreateDevice.

· The data format and the cooperative level of the mouse device are set (SetDataFormat and SetCooperativeLevel).

· A keyboard device is created with CreateDevice.

· The data format and the cooperative level of the keyboard device are set (SetDataFormat and SetCooperativeLevel).

· The buffer of the keyboard is created.

Getting the user input

It is important to note that there are two ways of getting the data from the devices created with DirectInput. We can get immediate data or buffered data. Buffered data is a set of events that are stored until we get them and immediate data is the current state of the device. We are using immediate data for the mouse and both immediate and buffered data for the keyboard.

The input of the user is retrieved in the method Input of the class Game.

The keyboard input is retrieved the following way:

· An array of 256 bytes (called keyboard) is filled with the current state of the keys (up or down) using the method GetDeviceState.

· Another array of 256 bytes (call keyboardUp) is set to know which keys have been released since the last call (GetDeviceData).

The mouse input is retrieved the following way:

· GetDeviceState is used to know the current state of the buttons and the movement of the mouse.

Using DirectX Audio

DirectX Audio (and especially DirectMusic) is used to play the sound effects and the music of the game.

Initialisation

Here are the steps needed to initialise DirectMusic.

· Create an IDirectMusicLoader8 pointer with CoCreateInstance. It will be used to load the sound files.

· Create an IDirectMusicPerformance8 pointer with CoCreateInstance. This is used to handle the sounds.

· The IDirectMusicPerformance8 is initialised with InitAudio.

· Some parameters are set with SetGlobalParam. In our case, we enable the automatic download (see “Playing sounds”).

Once DirectMusic is initialised, we have to load the WAV files in memory. We have for that created an array of pointers to IDirectMusicSegment8. Each pointer contains an object with the sound that can be played. The sound effects and the music are both loaded and played in the same manner.

The music files are loaded into segments with the method LoadObjectFromFile of the performance created before. For the music, we enable the looping of the music with SetReapeats.

Playing sounds

The sounds are simply played with a call to the method PlaySegmentEx of the performance object. Usually, we should need to download the files but we have enabled the automatic download of segments to avoid that.

Particle Systems

To increase the graphical quality of the game, I have added some particles systems. Particle systems are used to create three different types of effects:

· the explosions when bricks are destroyed

· the trail of the balls

· the glow of the pick-ups

General functioning of particle systems

These particle systems are extremely basic because they do not handle external forces such as gravity for example. The class Particle is in fact a whole particle system that can contain up to 40 emitters. It should be enough in this game. One emitter can be of any type of effect.

If there is an explosion or a new pick-up for example, a new emitter is created.

We have seen in the “Analysis and Design, Classes Description” section, the detail of the structure EMITTER. Let’s go over it again briefly.

The structure EMITTER contains a number of particles (nbParts) that is the maximum number of the particles that are created by the emitter. The dynamic array parts (array of particles) contains thus nbParts particles.

Then, there is a matrix matWorld. This matrix is used to define the global position of the emitter and its particles in the world. Only the translation components of the matrix are used. 

Some other fields are used differently depending on the type of emitter.

And of course, we have a variable partType used to know which kind of effect is made with this emitter. This variable is an enumerated type and can be BRICKHIT, PICKUPGLOW or BALLTRAIL.

Properties used in the game

Let’s look at the particular properties set to the emitter and its particles to achieve the desired effects.

Explosions

Explosions are the first effects that have been created using the particles. An explosion occurs when the ball breaks a brick.

The matrix is set to the position of the brick being hit. This way, we can centre our explosion with the origin, so this is handier. The explosion will be at its right place with the matrix.

The timeToLive field is initialised to the number of seconds the explosion will last. Each explosion has a different length randomly set by the program.

Each explosion is made up of fifteen particles that are texture-mapped quads.

The color is the same for each particle, so it is set in the emitter properties. The color is randomly created by the program but is always between red and yellow colors to simulate the fire color.

The animation of the particle for the explosion is simply particles going from the impact point and pushed away. While animated, the particles fade out and enlarge so their alpha (transparency) and size are re-computed at each frame. When the alpha of a particle reaches 0, the particle is dead. Knowing the time to live and the time since the creating of the particle, we can interpolate the values to get the alpha going from 0 to 1. Here is the formula I am using: 
[image: image5.wmf]1

+

+

=

timeToLive

birth

birth

alpha

.

Ball trail

The ball trail is a special type of emitter. There is one emitter by ball (between 1 and 3) but the particles of these emitters never die. Their size is proportional to the size of the ball. 

The matrix of the emitter is not used for this kind of particles. One ball trail is made up of 20 particles.

An index is stored in the emitter to know which ball it corresponds to.

The ball trail particles are the only one that can be re-emitted by the program. Each time a particle is dead, a new one is created to replace it. They all live the same amount of time (150 milliseconds) and are all created at the position of the ball to simulate the trail.

Pick-up glow

The glow effect around the pick-ups has also been created using the particle system of the game. However, this is only a single particle but if the particle system has been used, it is because it contains all the functions needed to create the glow and to animate it. The glow is just one emitter with one particle.

The matrix of the glow is initialised to the position of the brick containing the pick-up. The matrix is then modified in order to move the pick-up toward the bottom of the level. The fall speed of the pick-up is randomly chosen.

The color is also randomly chosen in the blue tones.

The alpha component is animated to make the pick-up blinking. The alpha is simply based on the sine function with the time as parameter.

Creating the particles with Direct3D

Let’s see in this part how are created and displayed the particles with the DirectX 8 API, more precisely Direct3D.

Vertex type

In Direct3D, we can create different types of vertex. For the particles system, I created my own vertex type that has the following properties:

· Untransformed position: the vertex is transformed by Direct3D before being displayed

· Color

· Mapping coordinates: the particles are texture-mapped

Effectively, each particle is in fact a texture-mapped quad. In Direct3D, only polygons (triangles) are displayed. The vertex type defined above is used to create the objects forming the particles.

Billboarding

At each frame, we know the position, size and alpha of each particle. We then modify the vertices of the corresponding vertex buffer in order to display the particle. As said before, each particle is displayed with a quad. We are using here a technique called billboarding that consists in placing the quad (particle) facing the viewer at all times. Here is how it works.

We first need to get the orientation of the viewer. This is done by retrieving the view matrix of Direct3D once the camera has been set. With this matrix, we can get the X and Y vectors of the screen in world space. We get them by reading the two first columns of the view matrix. We can then set the size of the particle par multiplying these vectors.

The Figure 4 shows how to use these vectors to create a texture quad.

Figure 4 - Using the X and Y view vectors to create a quad
In Direct3D 8, there is a new feature allowing billboards to be done in hardware. However, this technique didn’t work with the hardware I was developing the game on so I decided to do the billboarding code myself.

Alpha problem

When testing the game on various different computers, I noticed that the alpha blending used for the particles was not always working properly. The colors of the particles have an alpha used to fade out the particles (explosions particles, ball trail particles and blinking of the glow). So, I had to compute the right color from the alpha manually. I simply do that this way: 
[image: image6.wmf]alpha

Red

finalRed

*

=

 with alpha between 0 and 1. This is done also for the green and blue components. It then worked perfectly in the computers I tested.

Collisions detection and response

Of course, in a breakout game, the collision detection and response is an important part as this is the basis of the game. Let’s see how this has been implemented here.

The collisions are checked in the Ball class. So, for each ball, the collision functions are called.

Collision detection

The main idea is to compute the new position of the ball and then, check whether the line made of the old and new positions intersects with a brick or a wall. As we only collide with horizontal and vertical borders, this is very simple. We just have to take care of the size of the ball that can vary. We will just see an example with a collision with a brick from below. The steps are globally the same for the other sides.

Here are the steps involved:

· Check if the ball X position is aligned with the brick (dashed lines on Figure 5). This works because our time step between each frame is small.

· Check if there is a brick between the ball and the brick being tested (it can’t be hit from below).

· Test if the line made of the old and new positions intersects the bottom border of the brick (arrow and brick border on Figure 5).

· If it does, check if this is the earliest collision.

· Response to the collision (“Collision response”)

Figure 5 - Collision detection between a ball and a brick

Collision response

So once the collision has been detected, we must response to this collision. First, if the collision occurred with a brick, we have to check the type of the brick and destroy it if it is a breakable brick but we must also make the ball bounce. We will see here how this is done.

In the game, the ball direction is defined by an angle. This is a very handy way to define the movement of the ball. Thus, when there is a collision, we just have to change the angle of the ball. There are three types of collision responses: collisions with a horizontal border, collisions with a vertical border and collisions with the paddle.

The Figure 6 shows how are handled collisions with horizontal and vertical borders.

Figure 6 - Collision response with horizontal and vertical borders

For collision with the paddle, this is a bit different. Effectively, in order to be able to manipulate the ball with precision, the angle after collision with the paddle depends on the point of impact. This is clearly shown in the Figure 7 below.


Figure 7 - Direction vectors depending on the impact position

We thus simply use the following function to get the angles from the impact:


[image: image7.wmf]8

7

2

8

)

7

1

(

)

1

2

(

p

p

+

-

+

=

h

paddleWidt

x

angle

.

This equation comes from the idea that the angle is between 
[image: image8.wmf]8

p

 and 
[image: image9.wmf]8

7

p

 and with a bit of experimentation.

Score

In this section, we will first see how are displayed the sprites used for the score and then, how works the animation of the score during the game.

Displaying the score with Direct3D

As for the particles, we have defined a new vertex type in order to display the score. This time, the vertices have the following properties:

· Transformed position: the vertices are defined in screen space, therefore, we do not need to transform them through the Direct3D matrices

· Color

· Texture coordinates: the text on the sprite is displayed with a texture. The vertices must thus have texture coordinates

A class called Sprite2D is used to display each digit of the score. Each class Sprite2D has a vertex buffer that defines a quad. This quad is then positioned on the screen, the texture mapping is set up and the sprite is then displayed with Direct3D.

All the digits are contained in one texture file. To select the right digit, we just set the mapping coordinates “around” the digit on the texture.

In order to have the digit on a transparent background, we just have to define the right blending states in Direct3D. In our case, we are using a source blend factor of one and a destination blend factor of one too.

This technique is also used to display the number of the level and the lives of the player.

Score animation

When the player gets points, the score does not change directly. The score is animated in order to see the number changing, as for a counter. For this purpose, we have defined that there cannot be more than fourty points per second. If the player gets lots of points, it is added in a temporary value and at each frame, a small amount of points (up to fourty) is added to the score.

But of course, when the game is finished, we ensure that the real score is returned with all the points, even those that are not added yet to the displayed counter.

Debugging and Testing

When creating such projects, we of course encounter many problems and a good technique to test and debug the program can be very useful.

Debugging

Using a debugger

I used the debugger of the software Microsoft Visual C++. This debugger is extremely powerful and easy to use. We can for example stop the program while it is running to watch the value of the memory or some important variables. However, it is not always very handy to use this debugger with DirectX because some peripherals are ”blocked”.

Testing

Level configurations

As it is quite easy to modify the levels, I tried to set up many different organisations of bricks and tried to test every single case. For example, I tried to hit bricks from every side.

Testers

In order to test the game on as many different configurations as possible, I send some versions to people having a computer with DirectX8. I could then see how was the game playable on different computer and it also allowed me to test the game. I also tried to run the game on different computers of the university.

Results and Evaluation

In this part, we will see some screenshots of the game with descriptions. In order to see them in high quality, they are also available on the CD-Rom accompanying this report.

[image: image10.png]
We can see on this screenshot some explosions that create the ambiance of the game. Without the special effects, the game is not as enjoyable. We can see also the lighting effect of the ball and its trail.

[image: image11.png]
This second screenshots shows that the camera can be placed everywhere in the 3D world. That is a big advantage of 3D games. We can also see two pick-ups falling.

[image: image12.png] [image: image13.png]
These last screenshots show another special view and a screenshot with two balls at the same time. Both balls perform the lighting effect.

User Guide

As for every game, here is a manual with the rules and the way to play to the game.

Executing the game

To start the game, simply launch the file Kasbrik.exe. Make sure to have all the data files (wav, lvl, jpg and x folders).

The game then asks for full-screen or windowed mode (see Figure 8). Click YES for full-screen (640x480 32 bits)
 and NO for windowed (640x480 in the current bit depth).

If you executes the game from a write-protected media (protected disc or CD-Rom), the hi-scores will be lost when you will quit the game.

[image: image14.png]
Figure 8 - Message box for the full-screen or windowed mode

Menu

Description

Here is a detail and a description of the items of the main menu (see Figure 9):

· New Game: Start a new game.

· Resume Game: Resume the current game. If no game has been started yet, this option does not work.

· Options: Go to the options menu (see below).

· Hi-scores: Display the hi-scores.

· About: Display information about the game.

· Quit: Quit the game.

Here is now a description of the option menu (see Figure 9):

·  Lighting: Enable or disable the lighting effect made by the ball(s).

· Camera: Change the camera type (standard or paddle) (see also “Moving the camera”).

· Special effects: Enable or disable the special effects (ball trail, explosions and glow effect around pick-ups).

· Background: Enable or disable the background.

· Music: Change music or disable music. As the music files are very big (around 40 Megabytes each), the game works without these files and the music is automatically disabled.

· Sound effects: Enable or disable the sound effects.

[image: image15.png]
[image: image16.png]
Figure 9 - The menus of the game

Controls

Moving in the menus

To make your selection in the menu, you simply have to move the highlighted item with the UP and DOWN arrows and select it with ENTER.

Moving the camera

When you’re in the menus and if the camera mode is STANDARD, you can move the camera to any position of the world. The camera is moved with the mouse or the keyboard, here is how to do it:

Mouse:

· When in the menus press the left mouse button and move the mouse to rotate the camera around the centre of the world.

· When in the menus press the right mouse button and move the mouse to zoom in and out the camera.

Keyboard:

When in the menus, press A and Q to translate the camera vertically, W and S to translate the camera horizontally, and E and D to zoom in and out.

Game

Let’s see now more precisely how works the game.

Goal

The goal of the game is to break all the bricks of each level. There are 10 levels in this version of the game. You can move the paddle on the bottom of the screen to catch the ball and to break the bricks with that ball.

Controls

Here are the controls of the game.

You move the paddle with the mouse. If you go left, the paddle goes left, and if you go right, the paddle goes right.

At the beginning of the game or if you have taken some special pick-ups, the ball is stuck on the paddle. You can launch the ball by pressing the left mouse button.

If you want to pause or quit the game, you can press ESC to return to the menu.

Bricks

There are two different types of bricks.

First, there are all the standard bricks: [image: image17.jpg] [image: image18.jpg] [image: image19.jpg] [image: image20.jpg] [image: image21.jpg] [image: image22.jpg]. These bricks are bricks that the ball can break. Once broken, they disappear and can give a pick-up (see below).

Then, there is one type of brick that is unbreakable: [image: image23.jpg]. When the ball hits this kind of brick, nothing happens, the ball simply bounces on it. They of course do not need to be broken to finish the level.

Pick-ups

In the game, when the ball breaks a brick, a pick-up can fall from it. Here is a description of the pick-ups of the game:

[image: image24.jpg]: increase the speed of the ball.

[image: image25.jpg]: slow down the speed of the ball.

[image: image26.jpg]: shrink the paddle.

[image: image27.jpg]: enlarge the paddle

[image: image28.jpg]: the ball(s) become larger

[image: image29.jpg]: the ball(s) become smaller

[image: image30.jpg]: extra life

[image: image31.jpg]: a new ball is added in the game. There can be up to three balls at the same time.

[image: image32.jpg]: Glued paddle. When a ball hits the paddle, it stays on it until you launch it.

Score

Here is how is set up the score.

Each time you take a pick-up, you get 100 points.

Each time you hit a brick, you get points too. But the number of points depends on the current state of the game. For example, if the speed is high, you get more points because it is more difficult.

Here are the points:

· The minimum score you can get when you break a brick is 3 points.

· You get 1 point more if you have NOT the glue.

· You get 1 point more if you are in standard speed and 4 points more if you are in fast speed.

· You get one point more if the ball is small.

· You get 3 points more if the paddle is small.

So the maximum score you can get by breaking a brick is 12 (fast speed, small ball and small paddle).

Conclusion

This project allowed me to create a complete game. This game has been created for the module Games Programming where we had to create a Windows game using the DirectX API. This API is interesting because it contains everything we need to create a full game, that is graphics, sound and user input. I decided to create a 3D game because I think I brought me more knowloedge.

This game could of course have been improved in many points. At first, the menu is not very nice because it is using a DirectX helper class (CD3DFont). Then, the game could have more options like others pick-ups, other particular bricks, two-player mode.

I finally think that this project really brought me some new interesting knowledge on games programming and especially DirectX programming. I already knew before the basis of Direct3D but I could here reinforce this knowledge and learn DirectAudio and DirectInput.

References

Documentation

DirectX 8 API documentation

Websites

http://msdn.microsoft.com

Nate Miller web page (http://nate.scuzzy.net)

Search engines (www.altavista.com, www.yahoo.com…)

1



*3



1



*1



1



1



1



1



1



6



1



1



2



3



1



2



1



1



Brick



Paddle



Camera



Level



Pickups



Particles



Object



Ball



Sprite2D



Score



Menu



Timer



Game



2..n



C



A



B



1..3



Emitter



Particle position



X vector retrieved from the view matrix.



Y vector retrieved from the view matrix.



Vertex 1



Vertex 2



Vertex 3



Vertex 4



BRICK



size��new ball position



��old ball position



Horizontal border



Direction before impact: α



Direction after impact: -α



Vertical border



Direction before impact: α



Direction after impact: π-α



PADDLE



The user wants to quit



Get user input



Free the memory and exit



Main loop



0..n



�Rendering



182



Collision detection and response



Animation



Initialise the game (loading data)



Y vector retrieved from the view matrix.





� If the full-screen mode is not supported, the program will automatically switch to windowed.



_1052220338.unknown

_1052221936.unknown

_1052221987.unknown

_1052222000.unknown

_1052221548.unknown

_1052127133.unknown

_1052127182.unknown

_1052127125.unknown

